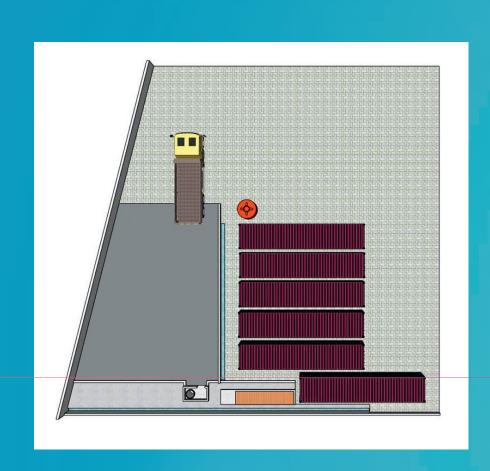


PEMBUATAN PROSEDUR PENGOLAHAN LIMBAH DAN LAYOUT TEMPAT PENAMPUNGAN SAMPAH PT ABC SURABAYA

SEMESTER GASAL 2024/2025

PT ABC Surabaya memproses **limbah padat** (kayu penyangga di dalam kontainer) pada Tempat Penampungan Sampah (TPS) dan **cair** (air bekas cucian kontainer) **tanpa Standard Operating Procedure** yang jelas. Hal ini memunculkan potensi pencemaran lingkungan akibat tidak teraturnya pengolahan limbah cair tersebut. Selain itu, perusahaan bertanggung jawab untuk memenuhi permintaan **Dinas Lingkungan Hidup** yang meminta PT ABC Surabaya untuk mempertanggungjawabkan pengelolaan limbah ini. Masalah ini mencakup bidang kajian **system design & engineering, facilities engineering & energy management, ergonomics & human factors, dan engineering economic analysis**.

Deskripsi Masalah

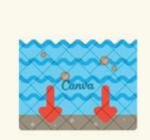

Dosen pembimbing

1 Ivan Kristianto Singgih, Ph. D.

Mahasiswa Peneliti

- 1. Andra Nikita (160321074)
- 2. Yahya Aufa Ahdillah (160321058)
- 3. Nicholas Chandra (160320009)
- 4. Candra Wirajati (160320048)

PERMASALAHAN: TPS 'KONDISI TERKINI' Tidak ada batas yang jelas antara area TPS dan non TPS pada sisi depan Sampah berserakan keluar area TPS Jaring selokan jebol 23

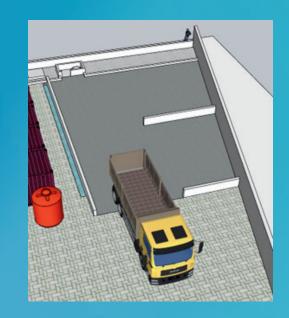

Layout ini mengakibatkan sampah tercampur dan berserakan.

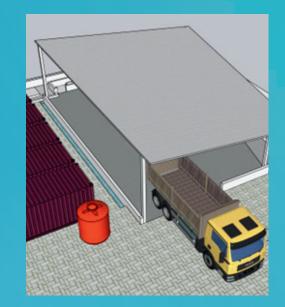
Alternatif Terpilih

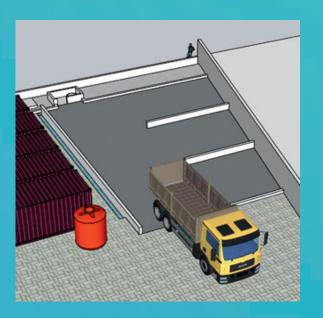
Perusahaan telah memutuskan untuk memilih **opsi pertama** dalam pengelolaan limbah, yaitu **sistem penjadwalan pengangkutan limbah ke Tempat Pembuangan Akhir (TPA)**. Opsi ini mengutamakan pemilahan limbah secara terstruktur di TPS perusahaan. **Limbah tersebut kemudian diangkut secara terjadwal oleh pihak ketiga tanpa perlu dilakukan pengolahan lebih lanjut.** Perusahaan memilih layout TPS ketiga yang membedakan limbah padat berdasarkan **volumenya (kecil, sedang, dan besar)**. Pemisahan limbah padat ini memastikan sampah terpilah dengan lebih baik dan tertata lebih rapih.

Terkait dengan limbah cair, perusahaan menerima masukan dari tim terkait dengan **strategi pengolahan limbah yang potensial**, mengikuti langkah di bawah ini. **Instalasi sistem ini membutuhkan dana sebesar hanya Rp. 7.145.000,-**, yang relatif jauh lebih kecil dan cocok untuk perusahaan dibandingkan ketika perusahaan **memasang sistem berteknologi moden yang nilainya mencapai Rp. 132.000.000,-**.

PRE FILTRASI MESH SCREEN


SEDIMENTA


FILTRASI PASIR


STERILISASI UV
CHLORINATOR

PENYIMPANAN

3 ALTERNATIF SOLUSI

PILIHAN SOP PEMINDAHAN LIMBAH

OPSI 1	OPSI 2	OPSI 3								
Sistem Penjadwalan Pengangkutan Limbah ke TPA	Pemilahan dan Daur Ulang Internal	Kerja Sama dengan Mitra Daur Ulang								
TAHAPAN PROSES										
 Pemilahan Penyimpanan di TPS Penjadwalan Pengangkutan Dokumentasi dan Pelaporan Inspeksi Berkala 	 Pemilahan Limbah Proses Daur Ulang Internal Pengangkutan Limbah Residual Pelaporan Perawatan Fasilitas Daur Ulang 	 Pemilahan Limbah di TPS Pengangkutan ke Mitra Daur Ulang Kerja Sama dengan Mitra Pelaporan dan Dokumentasi 								
KEUNGGULAN										
Minim investasi tambahan Cocok untuk perusahaan dengan volume limbah sedang	 Mengurangi volume limbah yang diangkut ke TPA Menciptakan nilai tambah dari hasil daur ulang 	 Biaya fasilitas internal berkurang Memanfaatkan keahlian mitra daur ulang 								
	KEKURANGAN									
Tidak mengurangi volume limbah yang diangkut	Membutuhkan investasi awal untuk fasilitas daur ulang	Bergantung pada keandalan mitra								
POTENSI PENGURANGAN BIAYA										
Pengurangan volume limbah Estimasi biaya pengangkutan pengangkutan	Pengurangan volume limbah yang dibuang ke TPA Estimasi biaya pengangkutan Pendapatan daur ulang	Pengurangan volume limbah yang dibuang ke TPA Estimasi biaya pengangkutan Potensi biaya kerja sama mitra								

Metode filtrasi air yang diusulkan memastikan pH air tetap sesuai untuk penggunaan pembersihan kontainer tanpa merusak kualitas dinding kontainer.

APAKAH AIRNYA AMAN?

Berdasarkan riset , hanya dengan menggunakan **proses filtrasi saja** dengan bantuan media kerikil, ijuk, pasir silika, dan karbon aktif dapat menurunkan pH dan kandungan COD dan TSS.

Tahapan Perlakuan			Waktu (Menit)	Debit (liter/detik)	pН	COD (mg/L)	Ef. COD (%)	TSS (mg/L)	Ef. TSS (%)	Kekeruhan (NTU)	Ef. Kekeruhar (%)	
S	Sebelum	Perlakua	n /			11,9	219,2		497		262	
	Ketebala	an Media				ш						
Kerikil	Ijuk	Pasir Silika	Karbon Aktif			Ш			4	7		
10 cm	10 cm	10 cm	5 cm	26:00	0,0064	8,1	20	90,87%	79	84,10%	112,8	56,94%
10 cm	10 cm	10 cm	10 cm	30:30	0,0054	7,8	13	94,06%	59	88,12%	84,5	67,74%
10 cm	10 cm	10 cm	15 cm	36:20	0,0045	8,3	8	96,35%	57	88,53%	83,5	68,12%
10 cm	10 cm	10 cm	20 cm	39:20	0,0042	7,9	8	96,35%	28	94,36%	39,7	84,84%
10 cm	10 cm	10 cm	25 cm	43:02	0,0038	7,9	7	96,80%	22	95,57%	20,9	92,02%
Standar Baku Mutu					6-9	100		30		25		

Sumber: ITiska, D.F., 2022. Pengolahan Limbah Cair Pencucian Kendaraan Menjadi Air Bersih Dengan Metode Filtrasi Multimedia Menggunakan Aliran Upflow. Tugas Akhir. Universitas Islam Negeri Ar-Raniry, Banda Aceh.

PENGGUNAAN AIR BERULANG

Walaupun air yang telah diproses terlihat bersih dan dapat dipakai berulang, perusahaan perlu melakukan **evaluasi lama penggunaan air yang sesuai**, dengan **melihat dampak pencucian terhadap kualitas kontainer**.

Pengujian kualitas kontainer dapat dilakukan berdasarkan beberapa standard berikut:

container-inspection-criterias/

https://www.shippingaustralia.com. au/wpcontent/uploads/2021/05/Standard s-for-Empty-Shipping-Container-Inspection-v2-May-2021.pdf

